KURUKSHETRA UNIVERSITY, KURUKSHETRA Established by the State Legislature Act XII of 1956 ('A+' Grade, NAAC Accredited) MASTER OF TECHNOLOGYINMECHANICAL ENGINEERING

(CREDIT BASED) (w. e. f. 2018-19)

SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

SEMESTER-III

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1		*Programme Elective-V	3	0	0	3	3	60	40	-	100	3
2		**Open Elective	3	0	0	3	3	60	40	-	100	3
3	MTIP-207A	Dissertation Phase-I	0	0	20	20	10	-	100	-	100	
Total							16	120	180		300	

*PROGRAMME ELECTIVE-V (I&P) for 3 rd Semester								
1.	MTIP-201A Enterprise Resource Planning							
2.	MTIP-203A	Design of Experiments						
3.	MTIP-205A	Strategic Entrepreneurship						

**OPEN ELECTIVE(I&P) for 3 rd Semester							
1.	MTOE-201A	Business Analytics					
2.	MTOE-203A	Industrial Safety					
3.	MTOE-205A	Operations Research					
4.	MTOE-207A	Cost Management of Engineering Projects					
5.	MTOE-209A	Composite Materials					
6.	MTOE-211A	Waste to Energy					

SEMESTER-IV

Sr. No.	Course Code	Course Name	L	T	Р	Hrs./ Week	Credits	Major Test	Minor Test	Practical	Total	Duration of Exam (Hrs.)
1	MTIP-202A	Dissertation Phase-II	0	0	32	32	16	-	100	200	300	
Total					32	16		100	200	300		

Total credits=68

Fourth Semester

MASTER OF TECHNOLOGY IN MECHANICAL ENGINEERING(4th semester)

(CREDIT BASED) (w. e. f. 2018-19) SPECIALIZATION: INDUSTRIAL & PRODUCTION ENGINEERING

MTIP-202A	DISSERTATION PHASE -II										
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time (Hrs.)			
				Test	Test						
0	0	32	16	-	100	200	300	-			
Objective	The main objective of the course is to make the students able to do some good research in										
_		•					•	or interrelated			
		oplications.				J	3				
			Course	e Outcom	es						
CO 1	Students will be able to design solutions for engineering problems that meet the specified										
	needs with appropriate considerations.										
CO 2	Students	will be able t	o conduct	investigation	ons of eng	gineering prob	olems us	ing research-			
	based knowledge and experimental/research methods including design of experiments,										
	analysis and interpretation of data, and synthesis of the information to provide valid										
	conclusions.										
CO 3	Students will be able to apply resources and modern engineering tools and techniques with										
	an understanding of the limitations.										
CO 4	Students will be able to either work in a research environment or in an industrial										
	environme	ent.									
CO 5	Students will be conversant with technical report writing, professional ethics, responsibilities										
	and norms of the engineering practice.										
CO 6	Students community		to present	and conv	ince their	topic of stud	dy to the	engineering			

The students are required to continue Analytical/Experimental/Computational/Industrial Problems or Case studies investigations in the field of Industrial and Production Engineering or other related fields which have been finalized in the third semester. They would be working under the supervision of a faculty member.

The students will be required to submit a progress report duly signed by their respective supervisors to the department, related to their dissertation work in the last week of March. The progress report will cover the following:

- The goal set for the period.
- Research papers studied.
- Methodology used in achieving the goal.
- The extent of fulfillment of the goal.
- References

The progress report must be of at least of 3-4 pages and the cover page should include the tentative topic, name of the candidate, name of the supervisor, period of progress report, signature of candidate and supervisor.

The candidate has to prepare a detailed dissertation report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up/numerical details/industrial case study etc. as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study.

w.e.f. 2018-19

The final dissertation will be submitted in the end of semester as per academic calendar for the session, which will be evaluated by internal as well as external examiners based upon his/her research work. At least one publication is expected before final submission of the dissertation from every student in peer reviewed referred journals or reputed conference from the work done by them in their dissertation. The dissertation should be presented in standard format as provided by the department.

The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a supervisor, co-supervisor etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his supervisor.