SEMESTER-II

S.	Course code	Subject	L	Τ	Р	Total	Evalu	ation	Cr.	Duration of
No.							Mid	End		Exam
							Sem	Sem		(Hrs.)
1	MTSE- 102	FEM in Structural	3	-	-	3	40	60	3	3
	А	Engineering								
2	MTSE-104 A	Structural Dynamics	3	-	-	3	40	60	3	3
3	*	Program Elective-III	3	-	-	3	40	60	3	3
4	**	Program Elective-IV	3	-	-	3	40	60	3	3
5	MTSE-122 A	Model Testing Lab		-	2	2	40	60	2	3
6	MTSE- 124	Numerical Analysis	-	-	2	2	40	60	2	3
	А	Lab								
7	MTSE- 126	Mini Project	-	-	4	2	40	60	2	3
	А									
8	***	Audit Course-II	2			0	100		0	3
		TOTAL	14		8	18	280	420	18	
						70	0			

*Progra	m Elective - III	**Program Elective – IV			
MTSE-106 A	Advanced Steel	MTSE-114 A	Design of Advanced Concrete		
Design			Structures		
MTSE-108 A	Design of Formwork	MTSE-116 A	Advanced Design of Foundations		
MTSE-110 A	Design of High Rise	MTSE-118 A	Soil Structure Interaction		
	Structures				
MTSE-112 A	Design of Masonry	MTSE-120 A	Design of Industrial Structure		
	Structures				

*** Audit Course - II							
MTAD-102 A	Constitution of India						
MTAD-104 A	Pedagogy Studies						
MTAD-106 A	Stress Management by Yoga						
MTAD-108 A	Personality Development through Life Enlightenment Skills.						

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

MTSE-102 A		Finite Element Method in Structural Engineering										
Lecture	Tutorial	TutorialPracticalCreditEnd Sem.Mid Sem.					Time					
		Evaluation Evaluation										
3	0 0 3 60 40					100	3 Hrs.					
Course Outcomes (CO)												
CO1	Use Finit	e Element l	Method fo	or structural analysis	5.							
CO2	Execute t	Execute the Finite Element Program/ Software										
CO3	CO3 Solve continuum problems using finite element analysis											

Unit I

Introduction: History and Applications. Spring and Bar Elements, Minimum Potential Energy Principle, Direct Stiffness Method, Nodal Equilibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress

Unit II

Beam Elements: Flexure Element, Element Stiffness Matrix, Element Load Vector.

Method of Weighted Residuals: Galerkin Finite Element Method, Application to Structural Elements, Interpolation Functions, Compatibility and Completeness Requirements, Polynomial Forms, Applications

Unit III

Types: Triangular Elements, Rectangular Elements, Three-Dimensional Elements, Isoparametric Formulation, Axi-Symmetric Elements, Numerical Integration, Gaussian Quadrature

Unit IV

Application to Solid Mechanics: Plane Stress, CST Element, Plane Strain Rectangular Element, Isoparametric Formulation of the Plane Quadrilateral Element, Axi- Symmetric Stress Analysis, Strain and Stress Computations.

Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-Processing, Use of Commercial FEA Software.

- 1) Finite Element Analysis, Seshu P., Prentice-Hall of India, 2005.
- 2) Concepts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York, 1995.
- 3) Fundamentals of Finite Element Analysis, Hutton David, Mc-Graw Hill, 2004
- 4) Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York, 1995
- 5) Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier, 2000
- 6) Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall India, 1991

MTSE-104 A		Structural Dynamics										
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time					
				Evaluation	Evaluation							
3	0	0	3	60	40	100	3 Hrs.					
Course Outcomes (CO)												
CO1	Analyze	and study	dynami	cs response of s	single degree free	dom syster	n using					
	fundamen	ntal theory d	and equat	ion of motion.								
CO2	Analyze	and study	dynami	cs response of L	Multi degree free	dom syster	n using					
	fundamen	ntal theory d	and equat	ion of motion								
CO3	Use the a	vailable so	ftware for	· dynamic analysis								

Unit I

Introduction: Objectives, Importance of Vibration Analysis, Nature of Exciting Forces, Mathematical Modeling of Dynamic Systems.

Unit II

Single Degree of Freedom System: Free and Forced Vibration with and without Damping, Response to Harmonic Loading, Response to General Dynamic Loading using Duhamel's Integral, Fourier Analysis for Periodic Loading, State Space Solution for Response.

Numerical Solution to Response using Newmark Method and Wilson Method, Numerical Solution for State Space Response using Direct Integration.

Unit III

Multiple Degree of Freedom System (Lumped parameter): Two Degree of Freedom System, Multiple Degree of Freedom System, Inverse Iteration Method for Determination of Natural Frequencies and Mode Shapes, Dynamic Response by Modal Superposition Method, Direct Integration of Equation of Motion.

Unit IV

Multiple Degree of Freedom System (Distributed Mass and Load): Single Span Beams, Free and Forced Vibration, Generalized Single Degree of Freedom System

Special Topics in Structural Dynamics (Concepts only): Dynamic Effects of Wind Loading, Moving Loads, Vibrations caused by Traffic, Blasting and Pile Driving, Foundations for Industrial Machinery, Base Isolation.

- 1) Dynamics of Structures, Clough R. W. and Penzien J., McGraw Hill.
- 2) Structural Dynamics and Introduction to Earthquake Engineering, Chopra A. K.
- 3) Vibration of Structures Application in Civil Engineering Design, Smith J. W., Chapman and Hall
- 4) Dynamics of Structures, Humar J. L., Prentice Hall.
- 5) Structural Dynamics Theory and Computation, Paz Mario, CBS Publishers
- 6) Dynamics of Structures, Hart and Wong

MTSE-122 A		Model Testing Lab									
Lecture	Tutorial	Itorial Practical Credit End Sem. Mid Sem. Total Time									
				Evaluation	Evaluation						
0	0	2	2	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Understa	nd the resp	onse of st	ructures.							
CO2	Prepare t	Prepare the models									
CO3	Conduct i	Conduct model testing for static loading.									
CO4	Conduct i	nodel testir	ig for free	e and forced vibra	tions						

Syllabus Content:

- 1. Response of structures and its elements against extreme loading events.
- 2. Model Testing: Static testing of plates, shells, and frames models.
- 3. Model Testing: Free and forced vibrations, Evaluation of dynamic modulus.
- 4. Beam vibrations, Vibration isolation, Shear wall building model, Time and frequencydomain study, Vibration Characteristics of RC Beams using Piezoelectric Sensors etc.

MTSE-124 A		Numerical Analysis Lab									
Lecture	Tutorial	Futorial Practical Credit		End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
0	0	2	2	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Find Roo	ind Roots of non-linear equations by Bisection method and Newton's method.									
CO2	Do curve	fitting by le	east squar	re approximations.							
CO3	Solve the	system of L	inear Equ	uations using Gau	ss - Elimination/ Ga	uss - Seidal	Iteration/				
	Gauss - J	orden Meth	od								
CO4	To Integr	ate Numeri	cally Usir	ng Trapezoidal and	d Simpson 's Rules						
CO5	To Find	Numerical	Solution	of Ordinary Diff	erential Equations	by Euler's	Method,				
	Runge- K	utta Metho	d								

List of Experiments:

- 1. Find the Roots of Non-Linear Equation Using Bisection Method.
- 2. Find the Roots of Non-Linear Equation Using Newton's Method.
- 3. Curve Fitting by Least Square Approximations.
- 4. Solve the System of Linear Equations Using Gauss Elimination Method.
- 5. Solve the System of Linear Equations Using Gauss Seidal Iteration Method.
- 6. Solve the System of Linear Equations Using Gauss Jorden Method.
- 7. Integrate numerically using Trapezoidal Rule.
- 8. Integrate numerically using Simpson's Rules.
- 9. Numerical Solution of Ordinary Differential Equations By Euler's Method.
- 10. Numerical Solution of Ordinary Differential Equations ByRunge- Kutta Method.

MTSE-126 A				Mini Project					
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
0	0	4	2	60	40	100	3 Hrs.		
			Course (Dutcomes (CO)					
CO1	Identify	, structural	engineeri	ing problems revie	wing available litera	ature			
CO2	Study d	Study different techniques used to analyze complex structural systems.							
CO3	Work o applyin	n the soluti g engineeri	ons given ng princi	and present solut ples.	ion by using his/her	technique			

Syllabus Content:

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

MTSE-106 A		Advanced Steel Design									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0 0 3 60 40 100 3 Hrs.									
		(Course O	utcomes (CO)							
CO1	Design st	teel structur	res/ comp	onents by different	t design processes						
CO2	Analyze d	alyze and design beams and columns for stability and strength, and drift									
CO3	Design w	elded and l	bolted cor	nnections							

Unit 1

Properties of Steel: Mechanical Properties, Hysteresis, Ductility.

Unit 2

Hot Rolled Sections: compactness and non-compactness, slenderness, residual stresses.

Unit 3

Design of Steel Structures: Inelastic Bending Curvature, Plastic Moments, Design Criteria Stability, Strength, Drift.

Unit 4

Stability of Beams: Local Buckling of Compression Flange & Web, Lateral Torsional Buckling.

Unit 5

Stability of Columns: Slenderness Ratio, Local Buckling of Flanges and Web, Bracing of Column about Weak Axis. Unit 6

Method of Designs: Allowable Stress Design, Plastic Design, Load and Resistance Factor Design;

Unit 7

Strength Criteria: Beams - Flexure, Shear, Torsion, Columns - Moment Magnification Factor, Effective Length PM Interaction, Biaxial Bending, Joint Panel Zones.

Unit 8

Drift Criteria: P Effect, Deformation Based Design

Unit 9

Connections: Welded, Bolted, Location Beam Column, Column Foundation, Splices.

- 1) Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi
- 2) Design of Steel Structures Arya A. S., Ajmani J. L., Nemchand and Bros., Roorkee
- 3) The Steel Skeleton- Vol. II, Plastic Behaviour and Design Baker J. F., Horne M. R., Heyman J., ELBS
- 4) Plastic Methods of Structural Analysis, Neal B. G., Chapman and Hall London
- 5) IS 800: 2007 General Construction in Steel Code of Practice, BIS, 2007
- 6) SP-6 Handbook of Structural Steel Detailing, BIS, 1987

MTSE-108 A		Design of Formwork									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Select pro	oper formw	ork, acce	ssories and materia	al						
CO2	Design th	ne form wor	k for Bea	ums, Slabs, columns	s, Walls and Found	ations					
CO3	Design th	ne form wor	k for Spe	cial Structures							
CO4	Understa	Inderstand the working of flying formwork									
CO5	Judge the	e formwork	failures t	through case studie	25						

Unit 1

Introduction: Requirements and Selection of Formwork

Unit 2

Formwork Materials- Timber, Plywood, Steel, Aluminium, Plastic, and Accessories. Horizontal and Vertical Formwork Supports

Unit 3

Formwork Design: Concepts, Formwork Systems and Design for Foundations, Walls, Columns, Slab and Beams

Unit 4

Formwork Design for Special Structures: Shells, Domes, Folded Plates, Overhead Water Tanks, Natural Draft Cooling Tower, Bridges

Unit 5

Flying Formwork: Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete, Formwork Management Issues –Pre- and Post-Award.

Unit 6

Formwork Failures: Causes and Case studies in Formwork Failure, Formwork Issues in Multi-Story Building Construction

- 1) Formwork for Concrete Structures, Peurify, Mc Graw Hill India, 2015
- 2) Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012
- 3) IS 14687: 1999, False workfor Concrete Structures Guidelines, BIS

MTSE-110 A		Design of High Rise Structures										
Lecture	Tutorial	Practical	Credit	End Sem. Mid Sem.		Total	Time					
				Evaluation	Evaluation							
3	0	0	3	60	40	100	3 Hrs.					
Course Outcomes (CO)												
CO1	Analyze, loading c	design and conditions	d detail 1	Transmission/ T	V tower, Mast and	d Trestles wi	th different					
CO2	Analyze,	design and	detail the	e RC and Steel C	Chimney							
CO3	Analyze. using rele	nalyze. design and detail the tall buildings subjected to different loading conditions sing relevant codes										

Unit 1

Design of transmission/ TV tower, Mast and trestles: Configuration, bracing system, analysis and design for vertical transverse and longitudinal loads.

Unit 2

Analysis and Design of RC and Steel Chimney, Foundation design for varied soil strata.

Unit 3

Tall Buildings: Structural Concept, Configurations, various systems, Wind and Seismic loads, Dynamic approach, structural design considerations and IS code provisions. Firefighting design provisions

Unit 4

Application of software in analysis and design.

- 1) Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., SouthAsian Publishers, New Delhi, 2002
- 2) Structural Analysis and Design of Tall Buildings, Taranath B. S., Mc Graw Hill, 1988
- Illustrated Design of Reinforced Concrete Buildings (GF+3storeyed), Shah V. L. & Karve S. R., Structures Publications, Pune, 2013
- 4) Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications, 1976
- 5) Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India. 1991
- 6) High Rise Building Structures, Wolfgang Schueller, Wiley., 1971
- 7) Tall Chimneys, Manohar S. N., Tata Mc Graw Hill Publishing Company, New Delhi

MTSE-112 A		Design of Masonry Structures										
Lecture	Tutorial	utorial Practical Credit End Sem. Mid Sem. Total Time Evaluation Evaluation										
3	0	0	3	60	40	100	3 Hrs.					
	Course Outcomes (CO)											
CO1	Understa	nd the mas	onry desi	gn approaches.								
CO2	Analyze H	Reinforced	Masonry	Members								
CO3	Determin	e interactio	ons betwe	en members								
CO4	Determin	e shear str	ength and	l ductility of Reinfe	orced Masonry men	ibers						
CO5	Check the	e stability o	f walls									
CO6	Perform of	elastic and	Inelastic	analysis of mason	ery walls							

Unit-I

Introduction: Historical Perspective, Masonry Materials, Masonry Design Approaches, Overview of Load Conditions, Compression Behaviour of Masonry, Masonry Wall Configurations, Distribution of Lateral Forces

Unit-II

Flexural Strength of Reinforced Masonry Members: In plane and Out-of-plane Loading

Unit-III

Interactions: Structural Wall, Columns and Pilasters, Retaining Wall, Pier and Foundation

Unit-IV

Shear Strength and Ductility of Reinforced Masonry Members

Unit-V

Prestressed Masonry - Stability of Walls, Coupling of Masonry Walls, Openings, Columns, Beams

Unit-VI

Elastic and Inelastic Analysis, Modeling Techniques, Static Push-Over Analysis and use of Capacity Design Spectra

References Books:

- 1) Design of Reinforced Masonry Structures, Narendra Taly, ICC, 2nd Edn
- 2) Masonry Structures: Behavior and Design, Hamid Ahmad A. and Drysdale Robert G., 1994
- 3) Mechanics of Masonry Structures, Editor: Maurizio Angelillo, 2014
- 4) Earthquake-resistant Design of Masonry Buildings,<u>Toma evi</u> Miha, Imperial College Press, 1999

MTSE-114 A	Design of Advanced Concrete Structures								
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time		
3	0	0	3	60	40	100	3 Hrs.		
Course Outcomes (CO)									
CO1	Analyze t	Analyze the special structures by understanding their behaviour							
CO2	Design a	Design and prepare detail structural drawings for execution citing relevant IS codes							

Unit-I

Design philosophy, Modeling of Loads, Material Characteristics

Unit-II

Reinforced Concrete - P-M, M-phi Relationships, Strut-and- Tie Method, Design of Deep Beam and Corbel, Design of Shear Walls, Compression Field Theory for Shear Design, Design against Torsion; IS, ACI and Eurocode

Unit-III

Steel Structures -- Stability Design, Torsional Buckling - Pure, Flexural and Lateral, Design of Beam-Columns, Fatigue Resistant Design, IS code, AISC Standards and Eurocode

References Books:

- 1) Reinforced Concrete Design, Pillai S. U. and MenonD., Tata McGraw-Hill, 3rd Ed, 1999
- 2) Design of Steel Structures, Subramaniam N., Oxford University Press, 2008
- 3) Reinforced Concrete Structures, Park R.and PaulayT., John Wiley & Sons, 1995
- 4) Advanced Reinforced Concrete Design, Varghese P. C., Prentice Hall of India, New Delhi
- 5) Unified Theory of Concrete Structures, Hsu T. T. C. and Mo Y. L., John Wiley & Sons, 2010
- Steel Structures Design and Behavior Emphasizing Load and Resistance Factor Design, Salmon C. G., Johnson J. E. and Malhas F. A., Pearson Education, 5th Ed, 2009
- 7) Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi
- Plastic Methods of Structural Analysis, Neal B.G., Chapman and Hall London

MTSE-116 A		Advanced Design of Foundation									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Decide th	e suitabilit	y of soil s	strata for different p	rojects						
CO2	Design sh	Design shallow foundations deciding the bearing capacity of soil									
CO3	Analyze a	nalyze and design the pile foundation									
CO4	Understa	nd analysis	methods	for well foundation							

Unit-I

Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, Methods of Borings along with Various Penetration Tests

Unit-II

Shallow Foundations, Requirements for Satisfactory Performance of Foundations, Methods of Estimating Bearing Capacity, Settlements of Footings and Rafts, Proportioning of Foundations using Field Test Data, Pressure - Settlement Characteristics from Constitutive Laws

Unit-III

Pile Foundations, Methods of Estimating Load Transfer of Piles, Settlements of Pile Foundations, Pile Group Capacity and Settlement, Laterally Loaded Piles, Pile Load Tests, Analytical Estimation of Load- Settlement Behavior of Piles, Proportioning of Pile Foundations, Lateral and Uplift Capacity of Piles

Unit-IV

Well Foundation, IS and IRC Code Provisions, Elastic Theory and Ultimate Resistance Methods

Unit-V

Tunnels and Arching in Soils, Pressure Computations around Tunnels

Unit-VI

Open Cuts, Sheeting and Bracing Systems in Shallow and Deep Open Cuts in Different Soil Types

Unit-VII

Coffer Dams, Various Types, Analysis and Design, Foundations under uplifting loads, Soil-structure interaction

Reference Books

- 1) Design of foundation system, N.P. Kurian, Narosa Publishing House
- 2) Foundation Analysis and Design, J. E. Bowles, Tata McGraw Hill New York
- 3) Analysis and Design of Substructures, Sawmi Saran, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi

MTSE-118 A		Soil Structure Interaction									
Lecture	Tutorial	utorial Practical Credit End Sem. Mid Sem. Total									
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Understand soil structure interaction concept and complexities involved										
CO2	Evaluate soil structure interaction for different types of structure under various										
	condition	s of loadin	g and sub	osoil characteristics	5						
CO3	Prepare of	comprehen	sive desig	gn oriented compu	ter programs for in	iteraction p	oroblems				
	based on	theory of s	ub grade	reaction such as be	eams, footings, raft	s etc					
CO4	Analyze	different ty	vpes of f	rame structure for	unded on stratified	d natural					
	deposits v	deposits with linear and non-linear stress-strain characteristics									
CO5	Evaluate	action of g	roup of p	viles considering st	ress-strain characte	eristics of					
	real soils		- • •			-					

Unit- I

Critical Study of Conventional Methods of Foundation Design, Nature and Complexities of Soil Structure Interaction

Unit- II

Application of Advanced Techniques of Analysis such as FEM and Finite Difference Method.

Relaxation and Interaction for the Evaluation of Soil Structure Interaction for Different Types of Structure under various Conditions of Loading and Subsoil Characteristics

Unit -III

Preparation of Comprehensive Design Oriented Computer Programs for Specific Problems, Interaction Problems based on Theory of Sub Grade Reaction Such as Beams, Footings, Rafts Etc.

Unit- IV

Analysis of Different Types of Frame Structures Founded on Stratified Natural Deposits with Linear and Non-Linear Stress-Strain Characteristics.

Unit- V

Determination of Pile Capacities and Negative Skin Friction, Action of Group of Piles Considering Stress-Strain Characteristics of Real Soils, Anchor Piles and Determination of Pullout Resistance

- 1) Analytical and Computer Methods in Foundation, Bowels J.E.,McGraw Hill Book Co., New York, 1974
- 2) Numerical Methods in Geotechnical Engineering, Desai C.S. and Christian J.T., McGraw Hill Book Co., New York
- 3) Soil Structure Interaction The real behaviour of structures, Institution of Structural Engineers
- 4) Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg. Vol-17, Elsevier Scientific Publishing Company
- 5) Elastic Analysis of Soil-Foundation Interaction, Selvadurai A.P.S., Elsevier Scientific Publishing Company
- 6) Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd.
- 7) Design of Foundation System- Principles & Practices, Kurian N. P., Narosa Publishing

MTSE-120 A		Design of Industrial Structure									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
		(Course O	utcomes (CO)						
CO1	Design St	teel Gantry	Girders								
CO2	Design St	Design Steel Portal, Gable Frames									
CO3	Design St	teel Bunker	s and Sil	os							
CO4	Design C	Chimneys an	d Water	Tanks							

Unit I

Steel Gantry Girders – Introduction, loads acting on gantry girder, permissible stress, types of gantry girders and crane rails, crane data, maximum moments and shears, construction detail, design procedure

Unit II

Portal Frames – Design of portal frame with hinge base, design of portal frame with fixed base - Gable Structures – Lightweight Structures

Unit III

Steel Bunkers and Silos – Design of square bunker – Jansen's and Airy's theories – IS Code provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams Design of cylindrical silo – Side plates – Ring girder – stiffeners

Unit IV

Chimneys – Introduction, dimensions of steel stacks, chimney lining, breech openings and access ladder, loading and load combinations, design considerations, stability consideration, design of base plate, design of foundation bolts, design of foundation

Unit V

Water Tanks – Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams –Design of staging – Base plates – Foundation and anchor bolts

Unit VI

Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder –Design of staging and foundation

- 1) Design of Steel Structure, Punmia B. C., Jain Ashok Kr., Jain Arun Kr., 2nd Ed., Lakshmi Publishers, 1998
- 2) Design of Steel Structures, Ram Chandra, 12th Ed., Standard Publishers, 2009.
- 3) Design of Steel Structures, Subramaniyam

Au	dit	Π

MTAD-102 A			Constitu	ition of India				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
2	0	0	0	-	100	100	3 Hrs.	
Program	Understa	nd the pren	nises info	orming the twi	in themes of libert	ty and freedom	from a	
Objective (PO)	civil righ	ts perspect	tive and	to address th	ne growth of Indi	an opinion reg	garding	
	modern Indian intellectuals' constitutional role and entitlement to civil and							
	economic rights as well as the emergence of nationhood in the early years of Indian							
	nationalis	sm.						
		Co	ourse Ou	tcomes (CO)				
CO1	Discuss ti	he growth d	of the den	and for civil i	rights in India for	the bulk of India	ans	
	before the	e arrival of	Gandhi i	n Indian politi	ics.			
CO2	Discuss ti	he intellecti	ual origin	ns of the frame	work of argument	that informed t	he	
	conceptue	alization of	social re	forms leading	to revolution in In	ıdia.		
CO3	Discuss ti	he circumst	ances su	rrounding the	foundation of the	Congress Socia	list	
	Party [CS	SP] under t	he leader	ship of Jawah	arlal Nehru and th	he eventual failı	ire of	
	the propo	sal of direc	t election	is through adu	lt suffrage in the l	Indian Constitut	tion.	
CO4	Discuss ti	he passage	of the Hi	ndu Code Bill	of 1956.			

Unit I

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working) Philosophy of the Indian Constitution: Preamble, Salient Features

Unit 2

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality , Right to Freedom , Right against Exploitation , Right to Freedom of Religion, Cultural and Educational Rights , Right to Constitutional Remedies , Directive Principles of State Policy , Fundamental Duties.

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications. Powers and Functions

Unit 3

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

Unit 4

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

- 1) The Constitution of India, 1950 (Bare Act), Government Publication.
- 2) Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3) M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4) D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Audit-II

MTAD-104 A			Pedagog	y Studies				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
2	0	0	0	-	100	100	3 Hrs.	
Program	Review	existing ev	vidence o	n the review to	pic to inform p	programme des	sign and	
Objective (PO)	policy n	naking un	dertaken	by the DFID,	other agencies	s and research	ers and	
Identify critical evidence gaps to guide the development.								
Course Outcomes (CO)								
CO1	What peo	lagogical _I	oractices	are being used	by teachers in	n formal and	informal	
	classroon	ns in develo	ping cou	ntries?				
CO2	What is t	the evidenc	e on the	effectiveness of	these pedagog	vical practices,	in what	
	condition	s, and with	what pop	ulation of learne	ers?			
CO3	How can	teacher ed	ucation (curriculum and	practicum) and	l the school cu	rriculum	
	and guidd	ance materi	als best s	upport effective	pedagogy?			
CO4	What is th	he importar	ice of ide	ntifying research	n gaps?			

Unit I

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education., Conceptual framework, Research questions. Overview of methodology and Searching. Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries., Curriculum, Teacher education.

Unit II

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

Unit III

Professional development: alignment with classroom practices and follow-up support, Peer support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes,

Unit IV

Research gaps and future directions: Research design, Contexts, Pedagogy, Teacher education Curriculum and assessment, Dissemination and research impact.

References

1) Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2) Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3) Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4) Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

5) Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

6) Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

Audit II

MTAD-106 A		Stress Management by Yoga								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	To achiev	To achieve overall health of body and mind and to overcome stress								
Objective (PO)										
		Co	ourse Ou	tcomes (CO)						
CO1	Develop	healthy mi	nd in a he	ealthy body th	us improving socia	l health.				
CO2	Improve	Improve efficiency								
CO3	Learn th	Learn the Yog asan								
CO4	Learn th	Learn the pranayama								

Unit I

Definitions of Eight parts of yog (Ashtanga).

Unit II

Yam and Niyam, Do's and Don't's in life; Ahinsa, satya, astheya, bramhacharya and aparigraha; Shaucha, santosh, tapa, swadhyay, ishwarpranidhan.

Unit III

Asan and Pranayam, Various yog poses and their benefits for mind & body,

Unit IV

Regularization of breathing techniques and its effects-Types of pranayam.

References

1) 'Yogic Asanas for Group Tarining-Part-I'' :Janardan Swami Yogabhyasi Mandal, Nagpur

2) "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Audit II

MTAD-108 A	Pe	Personality Development through Life Enlightenment Skills									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
2	0	0	0	-	100	100	3 Hrs.				
Program	To learn	To learn to achieve the highest goal happily									
Objective (PO)	To becom	To become a person with stable mind, pleasing personality and determination									
	To awak	To awaken wisdom in students									
Course Outcomes (CO)											
CO1	Students	become av	vare abou	ıt leadership.							
CO2	Students	Students will learn how to perform his/her duties in day to day work.									
CO3	Underst	and the tear	n buildin	g and conflict							
CO4	Student	will learn h	ow to bed	come role mod	lel for the society.						

Unit I

Neetisatakam-Holistic development of personality: Verses: 19, 20, 21, 22 (wisdom); Verses: 29, 31, 32 (pride & heroism); Verses: 26, 28, 63, 65 (virtue); Verses: 52, 53, 59 (don's); Verses: 71, 73, 75, 78 (do's).

Unit II

Approach to day to day work and duties; Shrimad Bhagwad Geeta: Chapter-2: Verses: 41, 47, 48; Chapter-3: Verses: 13, 21, 27, 35; Chapter-6: Verses: 5, 13, 17, 23, 35; Chapter-18: Verses: 45, 46, 48.

Unit III

Statements of basic knowledge; Shrimad Bhagwad Geeta: Chapter-2: Verses: 56, 62, 68; Chapter-12: Verses: 13, 14, 15, 16, 17, 18.

Unit IV

Personality of Role model; Shrimad Bhagwad Geeta: Chapter-2: Verses: 17; Chapter-3: Verses: 36, 37, 42: Chapter-4: Verses: 18, 38, 39; Chapter-18: Verses: 37, 38, 63.

- 1) Srimad Bhagavad Gita, Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.
- 2) Bhartrihari's Three Satakam (Niti-sringar-vairagya), P. Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.