KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A⁺' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR Master of Technology (Civil Engineering) Specialization: Structural Engineering (w.e.f. SESSION: 2018-19)

SEMESTER- I

S.	Course Code	SUBJECT	L	Т	Р	Total	Evalu	ation	Cr.	Duration
No.							Mid Sem	End Sem	-	of Exam (Hrs.)
1	MTSE-101 A	Advanced Structural analysis	3	-	-	3	40	60	3	3
2	MTSE-103 A	Advanced solid mechanics	3	-	-	3	40	60	3	3
3	*	Program Elective –I	3	-	-	3	40	60	3	3
4	**	Program Elective-II	3	-	-	3	40	60	3	3
5	MTSE-117 A	Structural Design Lab	-	-	2	2	40	60	2	3
6	MTSE-119 A	Advanced Concrete Lab	-	-	2	2	40	60	2	3
7	MTRM-111 A	Research Methodology and IPR	2	-	-	2	40	60	2	3
8	***	Audit Course-I	2	-	-	0	100	-	0	0
	TOTAL				4	18	280	420	18	
							70	0		

	*Program Elective - I	**Program Elective- II			
MTSE-105 A	Theory of Thin Plates and Shells	MTSE-111A	Analytical and Numerical		
			Methods for Structural		
			Engineering.		
MTSE-107 A	Theory and Applications of Cement	MTSE-113 A	Structural Health		
	Composites		Monitoring		
MTSE-109 A	Theory of Structural Stability	MTSE-115 A	Structural Optimization		

*** Audit Course-I						
MTAD-101 A	English for Research Paper Writing					
MTAD-103 A	Disaster Management					
MTAD-105 A	Sanskrit for Technical Knowledge					
MTAD-107 A	Value Education					

Note: 1. The course of program elective will be offered at $1/3^{rd}$ or 6 numbers of students (whichever is smaller) strength of the class.

2. *** Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

MTSE-101 A		Advanced Structural Analysis									
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time				
3	0	0	3	60	40	100	3 Hrs.				
		(Course O	utcomes (CO)	·						
CO1	Analyze the skeleton structures using stiffness analysis code.										
CO2	Use direc	et stiffness n	nethod un	derstanding its limi	itations						

Influence Coefficients: Physical Significance, Effects of Settlements, Temperature Change and Lack of Fit, Member Approach and Structure Approach

Unit II

Stiffness Method applied to Large Frames: Local Coordinates and Global Coordinates.

Stiffness Matrix Assembly of Structures: Stiffness Matrix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations, Calculation of Reactions and Member Forces

Unit III

Applications to Simple Problems: Beams, Plane Trusses, Plane Rigid Jointed Frames and Grids by Structure Approach and Member Approach.

Unit IV

Boundary Value Problems (BVP): Approximate Solution of Boundary Value Problems, Modified Galerkin Method for One-Dimensional BVP, Matrix Formulation of the Modified Galerkin Method. **Linear Element:** Shape Functions, Solution for Poisson's Equation, General One Dimensional Equilibrium Problem.

- 1) Matrix Analysis of Framed Structures, Weaver and Gere.
- 2) The Finite Element Method, Lewis P. E. and Ward J. P., Addison-Wesley Publication Co.
- 3) Computer Methods in Structural Analysis, Meek J. L., E and FN, Span Publication.
- 4) The Finite Element Method, Desai and Able, CBS Publication.
- 5) Matrix Analysis of Structures, Pandit & Gupta, Tata McGraw Hill Publications

MTSE-103 A		Advanced Solid Mechanics									
Lecture	Tutorial	orialPracticalCreditEnd Sem.Mid Sem.TotalTimeEvaluationEvaluationEvaluationEvaluationEvaluation									
3	0	0	3	60	40	100	3 Hrs.				
		Co	ourse Ou	tcomes (CO)							
CO1	Solve sim	olve simple problems of elasticity and plasticity understanding the basic concepts									
CO2	Apply nur	nerical met	hods to se	olve continuum pro	oblems						

Introduction to Elasticity: Displacement, Strain and Stress Fields, Constitutive Relations, Cartesian Tensors and Equations of Elasticity.

Strain and Stress Field: Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane, Differential Equations of Equilibrium, Hydrostatic and Deviatoric Components.

Unit II

Equations of Elasticity: Equations of Equilibrium, Stress- Strain relations, Strain Displacement and Compatibility Relations, Boundary Value Problems, Co-axiality of the Principal Directions.

Unit III

Two-Dimensional Problems of Elasticity: Plane Stress and Plane Strain Problems, Airy's stress Function, Two-Dimensional Problems in Polar Coordinates.

Torsion of Prismatic Bars: Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes

Unit IV

Plastic Deformation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.

- 1) Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill, 1961.
- 2) Elasticity, Sadd M.H., Elsevier, 2005.
- 3) Engineering Solid Mechanics, Ragab A.R., Bayoumi S.E., CRC Press, 1999.
- 4) Computational Elasticity, Ameen M., Narosa, 2005.
- 5) Solid Mechanics, Kazimi S. M. A., Tata McGraw Hill, 1994.
- 6) Advanced Mechanics of Solids, Srinath L.S., Tata McGraw Hill, 2000.

MTSE-117 A		Structural Design Lab									
Lecture	Tutorial	orial Practical Credit End Sem. Mid Sem. Total Tir Evaluation Evaluation									
0	0	2	2	60	40	100	3 Hrs.				
		Co	ourse Ou	tcomes (CO)							
CO1	Design and Detail all the Structural Components of Frame Buildings.										
CO2	Design an	nd Detail co	mplete M	lulti-Storey Frame I	Buildings						

Syllabus Content:

Design and detailed drawing of complete G+3 structures by individual student using latest relevant IS codes.

MTSE-119 A		Advanced Concrete Lab										
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time					
				Evaluation	Evaluation							
0	0	2	2	60	40	100	3 Hrs.					
	Course Outcomes (CO)											
CO1	Design hi	gh grade c	oncrete a	nd study the paran	neters affecting its p	erformance						
CO2	Conduct I	Conduct Non Destructive Tests on existing concrete structures										
CO3	Apply eng	gineering pl	rinciples	to understand beha	avior of structural/ e	elements						

List of Experiments:

- 1. Study of stress-strain curve of high strength concrete, Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
- 2. Effect of cyclic loading on steel.
- 3. Non-Destructive testing of existing concrete members.
- 4. Behavior of Beams under flexure, Shear and Torsion.

- 1. Properties of Concrete, Neville A. M., 5th Edition, Prentice Hall, 2012.
- 2. Concrete Technology, Shetty M. S., S. Chand and Co., 2006.

MTRM -105 A			Resear	rch Methodology a	and IPR				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time		
				Evaluation	Evaluation				
3	0	0	3	60	40	100	3 Hrs.		
Course Outcomes (CO)									
CO1	Understa	nd Researc	h problen	n formulation					
CO2	Analyze r	esearch rei	ated info	rmation					
CO3	Follow re	Follow research ethics							
CO4	Understa	nd that tod	ay's world	d is controlled by C	Computer, Informati	on Technolo	ogy, but		
	tomorrow	, world will	be ruled	by ideas, concept, a	and creativity.				
CO5	Understa	nding that	when IPR	would take such ir	nportant place in g	rowth of ind	dividuals		
	& nation,	it is needl	ess to em	phasis the need of t	information about I	ntellectual .	Property		
	Right to k	e promoted	l among s	students in general	& engineering in pa	articular.			
CO6	Understa	nd that IPR	protectio	on provides an ince	ntive to inventors fo	or further re	search		
	work and	investment	in R & T) which leads to cr	eation of new and h	etter nrodu	cts		
	and in tu	rn hrings al	hout acor	omic growth and s	ocial banafits	ener proun	<i>cib</i> ,		
1	unu m m	n orings u	<i>ioni</i> , <i>c</i> c <i>0</i>	ionne growin unu s	ociai Denejiis.				

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit II

Effective literature studies approaches, analysis Plagiarism, Research ethics.

Effective technical writing, how to write report paper,

Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students".
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Program Elective -I

MTSE-105 A		Theory of Thin Plates and Shells										
Lecture	Tutorial	Yutorial Practical Credit End Sem. Mid Sem. Total Time										
				Evaluation	Evaluation							
3	0	0	3	60	40	100	3 Hrs.					
	Course Outcomes (CO)											
CO1	Use analy	vtical metho	ods for the	e solution of th	in plates and shells							
CO2	Use analy	vtical metho	ods for the	e solution of sl	hells.							
CO3	Apply the	Apply the numerical techniques and tools for the complex problems in thin plates										
CO4	Apply the	numerical	technique	es and tools fo	r the complex probler	ms in shells.						

Unit 1

Introduction: Space Curves, Surfaces, Shell Co-ordinates, Strain Displacement Relations, Assumptions in Shell Theory, Displacement Field Approximations, Stress Resultants, Equation of Equilibrium using Principle of Virtual Work, Boundary Conditions.

Unit 2

Static Analysis of Plates: Governing Equation for a Rectangular Plate, Navier Solution for Simply-Supported Rectangular Plate under Various Loadings, Levy solution for Rectangular Plate with other Boundary Conditions

Unit 3

Circular Plates: Analysis under Axi- Symmetric Loading, Governing Differential Equation in Polar Co-ordinates. Approximate Methods of Analysis- Rayleigh-Ritz approach for Simple Cases in Rectangular Plates.

Unit 4 Static Analysis of Shells: Membrane Theory of Shells - Cylindrical, Conical and Spherical Shells,

Unit 5

Shells of Revolution: with Bending Resistance - Cylindrical and Conical Shells, Application to Pipes and Pressure Vessels.

Unit 6

Thermal Stresses in Plate/ Shell

- 1. Theory of Plates and Shells, Timoshenko S. and Krieger W., McGraw Hill.
- 2. Stresses in Plates and Shells, Ugural Ansel C., McGraw Hill.
- 3. Thin Elastic Shells, Kraus H" John Wiley and Sons
- 4. Theory of Plates, Chandra shekhara K., Universities Press
- 5. Design and Construction of Concrete Shells, RamaswamyG.S

Program Elective -I

MTSE-107 A		Theory and Applications of Cement Composites									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time				
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	Formulat	e constituti	ve behav	iour of composite m	aterials – Ferroce	ement, SIFC	CON and				
	Fibre Rei	nforced Co	ncrete - b	y understanding the	eir strain- stress bel	haviour.					
CO2	Classify t	he material	ls as per c	orthotropic and anis	otropic behaviour.						
CO3	Estimate	stimate strain constants using theories applicable to composite materials.									
CO4	Analyse a	nd design s	structural	elements made of c	ement composites.						

Unit 1

Introduction: Classification and Characteristics of Composite Materials- Basic Terminology, Advantages. Stress-Strain Relations- Orthotropic and Anisotropic Materials, Engineering Constants for Orthotropic Materials, Restrictions on Elastic Constants, Plane Stress Problem, Biaxial Strength, Theories for an Orthotropic Lamina.

Unit 2

Mechanical Behaviour: Mechanics of Materials Approach to Stiffness- Determination of Relations between Elastic Constants, Elasticity Approach to Stiffness- Bounding Techniques of Elasticity, Exact Solutions - Elasticity Solutions with Continuity, Halpin, Tsai Equations, Comparison of approaches to Stiffness

Unit 3

Cement Composites: Types of Cement Composites, Terminology, Constituent Materials and their Properties, Construction Techniques for Fibre Reinforced Concrete - Ferrocement, SIFCON, Polymer Concretes, Preparation of Reinforcement, Casting and Curing

Unit 4

Mechanical Properties of Cement Composites : Behavior of Ferrocement, Fiber Reinforced Concrete in Tension, Compression, Flexure, Shear, Fatigue and Impact, Durability and Corrosion

Unit 5

Application of Cement Composites: FRC and Ferrocement- Housing, Water Storage, Boats and Miscellaneous Structures. Composite Materials- Orthotropic and Anisotropic behaviour, Constitutive relationship, Elastic Constants

Unit 6

Analysis and Design of Cement Composite Structural Elements - Ferrocement, SIFCON and Fibre Reinforced Concrete.

- 1) Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis ,BSP Books, 1998. Ferrocement Theory and Applications, Pama R. P., IFIC, 1980
- New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983

Program Elective -I

MTSE-109 A		Theory of Structural Stability										
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
	·	(Course O	utcomes (CO)								
CO1	Determin	e stability a	of column.	s and frames								
CO2	Determin	e stability o	of beams a	and plates								
CO3	Use stabi	litv criteria	and cond	cepts for analyzing	p discrete and contin	uous system	lS					

Unit-1

Criteria for Design of Structures: Stability, Strength, and Stiffness, Classical Concept of Stability of Discrete and Continuous Systems, Linear and nonlinear behaviour.

Unit-2

Stability of Columns: Axial and Flexural Buckling, Lateral Bracing of Columns, Combined Axial, Flexural and Torsion Buckling.

Unit-3

Stability of Frames: Member Buckling versus Global Buckling, Slenderness Ratio of Frame Members.

Unit-4

Stability of Beams: lateral torsion buckling

Unit-5

Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combined loads

Unit-6

Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combined loads

Reference Books:

- 1) Theory of elastic stability, Timoshenko and Gere, Tata Mc Graw Hill, 1981
- 2) Principles of Structural Stability Theory, Alexander Chajes, Prentice Hall, New Jersey
- 3) Structural Stability of columns and plates, Iyengar, N. G. R., Eastern west press Pvt. Ltd.
- 4) Strength of Metal Structures, Bleich F. Bucking, Tata McGraw Hill, New York.

Program Elective -II

MTSE-111 A	Ar	Analytical and Numerical Methods for Structural Engineering										
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time					
				Evaluation	Evaluation							
3	0	0	3	60	40	100	3 Hrs.					
		(Course O	utcomes (CO)								
CO1	Solve ord	linary and p	partial dij	fferential equation	ns in structural me	chanics using	g numerical					
	methods	-	-	_								
CO2	Write a p	rogram to s	solve a ma	athematical proble	em.							

Unit 1

Fundamentals of Numerical Methods: Error Analysis, Polynomial Approximations and Interpolations

Unit 2

Curve Fitting; Interpolation and extrapolation

Unit 3

Solution of Nonlinear Algebraic and Transcendental Equations

Unit 4

Elements of Matrix Algebra: Solution of Systems of Linear Equations, Eigen Value Problems

Unit 5

Numerical Differentiation & Integration: Solution of Ordinary and Partial Differential Equations.

Unit 6

Finite Difference scheme: Implicit & Explicit scheme

Unit 7

Computer Algorithms: Numerical Solutions for Different Structural Problems, Fuzzy Logic and Neural Network

- 1) An Introduction to Numerical Analysis, AtkinsonK.E., J. Wiley and Sons, 1989.
- 2) Theory and Problems of Numerical Analysis, Scheid F, McGraw Hill Book Company, (Shaum Series), 1988.
- 3) Introductory Methods of Numerical Analysis, Sastry S. S, Prentice Hall of India, 1998

Program Elective -II

MTSE-113 A	Structural Health Monitoring									
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
3	0	0 0 3 60 40 100 3 Hr								
Course Outcomes (CO)										
CO1	1 Diagnosis the distress in the structure understanding the causes and factors.									
CO2	Assess the	Assess the health of structure using static field methods.								
CO3	Assess the health of structure using dynamic field tests									
CO4	Suggest r	epairs and	rehabilitat	ion measures of th	he structure					

Unit 1

Structural Health: Factors affecting Health of Structures, Causes of Distress, Regular Maintenance.

Unit 2

Structural Health Monitoring: Concepts, Various Measures, Structural Safety in Alteration.

Unit 3

Structural Audit: Assessment of Health of Structure, Collapse and Investigation, Investigation Management, SHM Procedures.

Unit 4

Static Field Testing: Types of Static Tests, Simulation and Loading Methods, sensor systems and hardware requirements, Static Response Measurement.

Unit 5

Dynamic Field Testing: Types of Dynamic Field Test, Stress History Data, Dynamic Response Methods, Hardware for Remote Data Acquisition Systems, Remote Structural Health Monitoring.

Unit 6

Introduction to Repairs and Rehabilitations of Structures: Case Studies (Site Visits), piezoelectric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique.

- 1) Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006
- 2) Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007
- 3) Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006
- 4) Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007

Program Elective -II

MTSE-115 A		Structural Optimization									
Lecture	Tutorial	utorial Practical Credit End Sem. Mid Sem. Total Time									
				Evaluation	Evaluation						
3	0	0	3	60	40	100	3 Hrs.				
Course Outcomes (CO)											
CO1	CO1 Use Variational principle for optimization										
CO2	Apply opt	pply optimization techniques to structural steel and concrete members									
CO3	Design using frequency constraint										

Unit 1

Introduction: Simultaneous Failure Mode and Design, Classical External Problems.

Unit 2

Calculus of Variation: Variational Principles with Constraints.

Unit 3

Linear Programming Integer Programming, Nonlinear Programming, Dynamic Programming, Geometric Programming and Stochastic Programming.

Unit 4

Applications: Structural Steel and Concrete Members, Trusses and Frames

Unit 5

Design: Frequency Constraint, Design of Layouts

- 1) Elements of Structural Optimization, Haftka, Raphael T., Gürdal, Zafer, Springer.
- 2) Variational methods for Structural optimization, Cherkaev Andrej, Springer

Audit-I

MTAD-101 A		English For Research Paper Writing								
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time			
				Evaluation	Evaluation					
2	0	0	0	-	100	100	3 Hrs.			
Program	Student will able to understand the basic rules of research paper writing.									
Objective (PO)										
		Co	ourse Ou	tcomes (CO)						
CO1	Underst	tand that he	ow to imp	rove your writii	ng skills and leve	l of readabili	ty			
CO2	Learn a	Learn about what to write in each section								
CO3	Underst	Understand the skills needed when writing a Title								
CO4	Ensure t	he good qu	ality of po	aper at very firs	t-time submissior	ı				

Unit I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

References:

1) Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)

2) Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

3) Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.

4) Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

Audit -I

MTAD-103 A			Di	saster Manag	gement			
Lecture	Tutorial	Practical	Credit	End Sem. Evaluation	Mid Sem. Evaluation	Total	Time	
2	0	0	0	-	100	100	3 Hrs.	
Program	Develop d	an understa	nding of	disaster risk r	eduction and mar	nagement		
Objective (PO)								
Course Outcomes (CO)								
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.							
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.							
CO3	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.							
CO4	critically approach their hom	v understan es, plannin e country c	d the stre	engths and we ogramming in ntries they wo	eaknesses of disas n different countr ork in	ter manageme ies, particular	ent Ay	

Unit I

Introduction: Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit II

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem.

Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit IV

Disasters Prone Areas in India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

1) R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company.

2) Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3) Goel S. L., Disaster Administration And Management Text And Case Studies",Deep &Deep Publication Pvt. Ltd., New Delhi.

Audit -I

MTAD-105 A			Sanskri	t for Technic	al Knowledge				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time		
				Evaluation	Evaluation				
2	0	0	0	-	100	100	3 Hrs.		
Program	Program Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit								
Objective (PO)	literature	about scie	nce & tec	hnology can b	oe understood and	d Being a logica	ıl		
language will help to develop logic in students									
Course Outcomes (CO)									
CO1	To get a	working kr	nowledge	in illustrious	Sanskrit, the scien	ntific language i	in the		
	world								
CO2	Learning	g of Sanskri	it to impr	ove brain func	ctioning				
CO3	Learning	g of Sanskri	it to devel	lop the logic in	n mathematics, so	cience & other s	ubjects		
	enhancing the memory power								
CO4	The engi	ineering scl	holars eq	uipped with So	anskrit will be ab	le to explore the	huge		
	knowled	ge from an	cient liter	ature		-	-		

Unit I

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit II

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit III

Technical concepts of Engineering: Electrical, Mechanical

Unit IV

Technical concepts of Engineering: Architecture, Mathematics

References

1) "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi

2) "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

3) "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Au	dit	Ι

MTAD-107 A			Value E	ducation				
Lecture	Tutorial	Practical	Credit	End Sem.	Mid Sem.	Total	Time	
				Evaluation	Evaluation			
2	0	0	0	-	100	100	3 Hrs.	
Program	Understand value of education and self- development, Imbibe good values in							
Objective (PO)	students d	and Let the	should kr	low about the in	nportance of c	haracter		
		Co	ourse Ou	tcomes (CO)				
CO1	Knowledg	ge of self-de	evelopme	nt				
CO2	Learn the	Learn the importance of Human values						
CO3	Developii	ng the over	all persor	nality				
CO4	Know abo	out the imp	ortance o	f character				

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

Unit II

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit IV

Character and Competence –Holy books Vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1) Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi