	B.Tech. (4th Semester) Mechanical Engineering										
ES-204			Ν	IATERIALS E	NGINEERING	6					
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Total	Time (Hrs.)				
3	0	0	3	75	25	100	3				
Purpose:	To understand internal structure- properties relationship of different types of materials and learn about Metallographic analysis and Characterization.										
			Co	ourse Outcon	ies						
CO 1	To understand	d the Crystal st	ructures and d	leformation me	echanism in va	arious materia	ils.				
CO 2	To study various types of phase diagrams, TTT curve and Iron carbon diagram. To learn about different heat treatment processes.										
CO 3	To learn about the failure mechanisms like Creep and Fatigue and designation of materials.										
CO 4	To study Basics of Metallography and Basic Principle involved in the working of various types of Material characterization techniques.										

UNITI

Crystallography: Review of Crystal Structure, Space Lattice, Co-ordination Number ,Number of Atomsper Unit Cell, Atomic Packing Factor; Numerical Problems Related to Crystallography.

Imperfection in Metal Crystals: Crystal Imperfections and their Classifications, Point Defects, Line Defects, Edge & Screw Dislocations, Surface Defects, Volume Defects.

Introduction to Engineering materials and Standard Materials Designation: Introduction to Engineering materials, Steel Terminology, Standard Designation System for Steels, Indian Standard specifications for steels as per BIS: Based on Ultimate Tensile Strength and based on Composition, AISI-SAE standard designation for Steels and Aluminium Alloys

UNIT II

Phase Diagrams: Alloy Systems, Solid solutions, Hume Rothery's Rules, Intermediate phases, Phase Diagrams, Gibbs Phase Rule, Cooling curves, The Lever Rule, binary phase diagrams, Applications of Phase Diagrams, Phase Transformation, Micro constituents of Fe-C system, Allotropic Forms of Iron ,Iron-iron carbide phase diagram, Modified Iron Carbon Phase Diagrams, Isothermal Transformation, TTT Curve,

Heat Treatment: Heat treatment of steels, Annealing, Normalising, Hardening, Tempering, Case Hardening, Ageing, Aus tempering and Mar tempering, Surface Hardening, Mass Effect, Equipments for Heat Treatment, Major Defects in Metals or Alloys due to faulty Heat treatment.

UNIT III

Deformation of Metal: Elastic and Plastic Deformation, Mechanism of Plastic Deformation, Slip; Critical Resolved Shear Stress, Twinning, Conventional and True Stress Strain Curves for Polycrystalline Materials, Yield Point Phenomena, Bauschinger Effect, Work Hardening.

Failure of Materials: Fatigue, Fatigue fracture, fatigue failure, Mechanismof Fatigue Failure, Fatigue Life calculations ,Fatigue Tests, Theories of Fatigue.

Creep: Creep Curve, Types of Creep, Factors affecting Creep, Mechanism of Creep, Creep Resistant Material, Creep Fracture, Creep Test, Stress Rupture test.

UNITIV

Introduction to Metallography: Metallography, Phase analysis, Dendritic growth, Cracks and other defects Corrosion analysis, Intergranular attack (IGA), Coating thickness and integrity, Inclusion size, shape and distribution, Weld and heat-affected zones (HAZ), Distribution and orientation of composite fillers, Graphite nodularity, Intergranular fracturing

Materials Characterization Techniques: Characterization techniques suchas X-Ray Diffraction (XRD), Scanning Electron Microscopy, transmission electron microscopy, atomic force microscopy, scanning tunneling microscopy, Atomic absorption spectroscopy.

Text Books:

- 1. Material Science by S.L.Kakani, New Age Publishers.
- 2. The Science and Engineering of Materials, Donald R. Askeland , Chapman & Hall.
- 3. Fundamentals of Material Science and Engineering by W. D. Callister, Wiley.
- 4. FundamentalofLightMicroscopyandElectronicImagingbyDouglasB.Murphy, Kindle Edition 2001
- 5. Materials Science and Engineering, V. Raghvan
- 6. Phase Transformation in Metals and Alloys, D. A.Porter &K.E. Easterling

Reference Books:

- 7. Material Science by Narula, TMH
- 8. Metallographic Handbook by Donald C. Zipperian, Pace Technologies, USA.
- 9. Robert Cahn Concise Encyclopedia of Materials Characterization, SecondEdition:2nd Edition (Advances in Materials Science and Engineering) Elsevier Publication 2005.
- 10. Smart Materials and Structures by Gandhi and Thompson, Chapman and Hall.

	B. Tech. (4th Semester) Mechanical Engineering										
MEC-202A	APPLIED THERMODYNAMICS										
Lecture	Tutorial Practical Credits Major Minor Total Time (Hrs										
				Test	Test						
3	0	0	3	75	25	100	3				
Purpose:	This course aims to provide a platform to students to understand, model and analyze concept										
	of dynamics involved in thermal energy transformation. To prepare them to carry out										
	experimental investigation and analysis of problems related to applied thermodynamics.										
			Cours	e Outcomes							
CO1	Understand	d the working	g of boilers,	types of bo	ilers, access	ories and n	nountings used on				
	boilers.										
CO 2	Learn abou	it simple and	modified Rar	nkine cycles.							
CO 3	Understand	d the design a	and analysis	of steam flow	/ through stea	am nozzles.	To learn about the				
		different type			Ū						
CO 4	Analyze the	e working an	d design of th	ne steam turk	pine and app	ly the knowl	edge in solving the				
	engineering	g problems of	turbines.			-					

UNITI

Steam Generators: Introduction; classification of boilers; comparison of fire tube and water tube boiler; their advantages; description of boiler; Lancashire; locomotive; Babcock; Wilcox etc.; boiler mountings; stop valve; safety valve; blow off valve; feed check etc.; water level indicator; fusible plug; pressure gauge; boiler accessories; feed pump; feed water heater; preheater; super heater; economizer; natural draught chimney design; artificial draught; stream jet draught; mechanical draught; calculation of boiler efficiency and equivalent evaporation.

UNIT II

Vapour Power Cycles: Simple and modified Rankine cycle; effect of operating parameters on Rankine cycle performance; effect of superheating; effect of maximum pressure; effect of exhaust pressure; reheating and regenerative Rankine cycle; types of feed water heater; reheat factor; binary vapour cycle. Simple steam engine, compound engine; function of various components.

UNIT III

Steam Nozzle: Function of steam nozzle; shape of nozzle for subsonic and supersonics flow of stream; variation of velocity; area of specific volume; steady state energy equation; continuity equation; nozzle efficiency; critical pressure ratio for maximum discharge; physical explanation of critical pressure; super saturated flow of steam; design of steam nozzle. Advantage of steam condensation; component of steam condensing plant; types of condensers; air leakage in condensers; Dalton's law of partial pressure; vacuum efficiency; calculation of cooling water requirement; air expansion pump.

UNIT IV

Steam Turbines: Introduction; classification of steam turbine; impulse turbine; working principle; compounding of impulse turbine; velocity diagram; calculation of power output and efficiency; maximum efficiency of a single stage impulse turbine; design of impulse turbine blade section; impulse, reaction turbine; working principle; degree of reaction; parsons turbine; velocity diagram; calculation of power output; efficiency of blade height; condition of maximum efficiency; internal losses in steam turbine; governing of steam turbine.

Text Books:

- 1. Thermal Engineering P L Ballaney, Khanna Publishers.
- 2. Thermodynamics and Heat Engines vol II R Yadav, Central Publishing House
- 3. Engineering Thermodynamics Work and Heat Transfer G. F. C Rogers and Y. R. Mayhew, Pearson.
- 4. Applied Thermodynamics for Engineering Technologists T. D. Eastop and A. McConkey, Pearson.

Reference Books:

- 1. Applied Thermodynamics for Engineering Technologists T D Eastop and
- A. McConkey, Pearson Education

2. Heat Engineering – V P Vasandani and D S Kumar, Metropolitan Book Co Pvt Ltd.

		B. Tech. (4th Semester) Mechanical Engineering										
MEC-204	4A	FLUID MECHANICS&FLUID MACHINES										
Lectur	e Tutorial	Tutorial Practical Credits Major Test Minor Test Total										
3	1	0	4	75	25	100	3					
Purpose:	Purpose: To build a fundamental understanding of concepts of Fluid Mechanics and their application in rotodynamic											
	machines.											
			Co	urse Outcome	6							
CO1	Upon completion	n of this cour	se, students	will be able to	apply mass and	d momentum	n conservation laws to					
	mathematically a	analyze simp	e flow situati	ons.								
CO2	The students wil	l be able to o	btain solutior	n for boundary la	ayer flows using	g exact or ap	proximate methods.					
CO3	The students will be able to estimate the major and minor losses through pipes and learn to draw the											
	hydraulic gradient and total energy lines.											
CO4	The students wil	I be able to o	btain the velo	ocity and pressu	ure variations in	various type	es of simple flows.					
CO5	They will be able	e to analyze t	ne flow and e	evaluate the per	formance of pu	mps and turk	bines.					

Unit I

Fluid Properties: Definition of fluid, Newton's law of viscosity, Units and dimensions-Properties of fluids, mass density, weight density, specific volume, specific gravity, viscosity, compressibility, surface tension and capillarity. **Fluid Kinematics:** Types of fluid flows, stream, streak and path lines; flow rate and continuity equation, differential equation of continuity in cartesian and polar coordinates, rotation and vorticity, circulation, stream and potential functions, flow net. Problems.

Fluid Dynamics: Concept of system and control volume, Euler's equation, Navier-Stokes equation, Bernoulli's equation and its practical applications, Impulse momentum equation. Problems.

Unit II

Viscous Flow: Flow regimes and Reynold's number, relationship between shear stress and pressure gradient. Exact flow solutions, Couette and Poisuielle flow, laminar flow through circular conduits. Problems.

Turbulent Flow Through Pipes:Darcy Weisbach equation, friction factor, Moody's diagram, minor losses in pipes, hydraulic gradient and total energy lines, series and parallel connection of pipes, branched pipes; equivalent pipe, power transmission through pipes. Problems.

Boundary Layer Flow: Concept of boundary layer, measures of boundary layer thickness, Blasius solution, von-Karman momentum integral equation, laminar and turbulent boundary layer flows, separation of boundary layer and its control. Problems.

Unit III

Dimensional Analysis: Need for dimensional analysis – methods of dimension analysis – Dimensionless parameters – application of dimensionless parameters. Problems.

Hydraulic Pumps: Introduction, theory of Rotodynamic machines, Classification, various efficiencies, velocity components at entry and exit of the rotor, velocity triangles; Centrifugal pumps, working principle, work done by the impeller, minimum starting speed, performance curves, Cavitation in pumps, Reciprocating pumps, working principle, Indicator diagram, Effect of friction and acceleration, air vessels, Problems.

Unit IV

Hydraulic Turbines: Introduction, Classification of water turbines, heads and efficiencies, velocity triangles, Axial, radial and mixed flow turbines, Pelton wheel, Francis turbine and Kaplan turbines, working principles, work done, design of turbines, draft tube and types, Specific speed, unit quantities, performance curves for turbines, governing of turbines. Problems.

Text Books:

- 1. Introduction to Fluid Mechanics R.W. Fox, Alan T. McDonald, P.J. Pritchard, Wiley Publications.
- 2. Fluid Mechanics Frank M. White, McGraw Hill
- 3. Fluid Mechanics and Fluid Power Engineering D.S. Kumar, S.K. Kataria and Sons
- 4. Fluid Mechanics Streeter V L and Wylie E B, Mc Graw Hill

5. Introduction to Fluid Mechanics and Fluid Machines – S.K. Som and G. Biswas, Tata McGraw Hill.

Reference Books:

- 1. Mechanics of Fluids I H Shames, Mc Graw Hill
- 2. Fluid Mechanics: Fundamentals and Applications YunusCengel and John Cimbala, McGraw Hill.
- 3. Fluid Mechanics: Pijush K. Kundu, Ira M. Cohen and David R. Rowling, Academic Press.

	B. Tech. (4th Semester) Mechanical Engineering										
MEC-206A			MECHA	NICS OF SC	olids-II						
Lecture	Tutorial Practical Credits Major Minor Total Time										
				Test	Test						
3	1	0	4	75	25	100	3				
Purpose	The objectiv	e of this cou	rse is to show	v the develo	oment of stra	in energy a	and stresses in				
	springs, pres	ssure vessel,	rings, links,	curved bars	under differe	ent loads. 1	The course will				
	help the students to build the fundamental concepts in order to solve engineering										
	problems										
			Course O	utcomes							
CO1	Identify the b	asics concep	ots of strain e	nergy and va	arious theorie	s of failures	s and solve the				
	problems										
CO 2	Differentiate	different typ	es of stress	es induced i	n thin press	ure vessel	and solve the				
	problems. U	se of Lame'	s equation to	o calculate tl	ne stresses i	nduced in	thick pressure				
	vessel.						-				
CO 3	Able to com	pute stresses	s in ring, disk	and cylinde	r due to rota	tion. Classi	fy the different				
	types of spring and analyze the stresses produced due to loading										
CO 4	Determine th	ne stresses ir	r crane hook,	rings, chain	link for differe	ent cross se	ection and also				
	the deflection	n of curved	bars and ri	ngs. Analyzo	e the stresse	es due to	unsymmetrical				
	bending and	determine th	e position of	shear centre	of different se	ection.	-				
Ilnit											

Unit I

Strain Energy & Impact Loading: Definitions, expressions for strain energy stored in a body when load is applied (i) gradually, (ii) suddenly and (iii) with impact, strain energy of beams in bending, beam deflections, strain energy of shafts in twisting, energy methods in determining spring deflection, Castigliano's theorem, Numerical.

Theories of Elastic Failures: Various theories of elastic failures with derivations and graphical representations, applications to problems of 2- dimensional stress system with (i) Combined direct loading and bending, and (ii) combined torsional and direct loading, Numericals.

Unit II

Thin Walled Vessels: Hoop & Longitudinal stresses & strains in cylindrical & spherical vessels & their derivations under internal pressure, wire would cylinders, Numericals.

Thick Cylinders & Spheres: Derivation of Lame's equations, radial & hoop stresses and strains in thick, and compound cylinders and spherical shells subjected to internal fluid pressure only, hub shrunk on solid shaft, Numericals.

Unit III

Rotating Rims & Discs: Stresses in uniform rotating rings & discs, rotating discs of uniform strength, stresses in (I) rotating rims, neglecting the effect of spokes, (ii) rotating cylinders, hollow cylinders & solids cylinders. Numericals.

Springs: Stresses in closed coiled helical springs, Stresses in open coiled helical springs subjected to axial loads and twisting couples, leaf springs, flat spiral springs, concentric springs, Numericals.

Unit IV

Bending of Curved Bars : Stresses in bars of initial large radius of curvature, bars of initial small radius of curvature, stresses in crane hooks, rings of circular & trapezoidal sections, deflection of curved bars & rings, deflection of rings by Castigliano's theorem, stresses in simple chain links, deflection of simple chain links, Problems. **Unsymmetrical Bending:** Introduction to unsymmetrical bending, stresses due to unsymmetrical bending, deflection of beam due to unsymmetrical bending, shear center for angle, channel, and I-sections, Numericals. **Text Books:**

1. Strength of Materials – R.K. Rajput, Dhanpat Rai & Sons.

- 2. Strength of Materials Sadhu Singh, Khanna Publications.
- 3. Strength of Materials R.K. Bansal, Laxmi Publications.

Reference Books:

- 1. Strength of Materials Popov, PHI, New Delhi.
- 2. Strength of Materials Robert I. Mott, Pearson, New Delhi
- 3. Strength of Material Shaums Outline Series McGraw Hill
- 4. Strength of Material Rider ELBS

	B. Tech. (4th Semester) Mechanical Engineering											
MEC-208A	Instrumentation & Control											
Lecture	Tutorial	Tutorial Practical Credits Major Test Minor Test Total Time(Hrs)										
3	0	0	3	75	25	100	3					
Purpose	To understand the basics of the measurement of various quantities using instruments, their accuracy and range and the techniques for controlling devices automatically.											
			Course Ou	tcomes								
CO1	Students will h	ave basic knowl	edge about me	asurement syste	ems and their co	mponents.						
CO2	Students will learn about various sensors used for measurement of mechanical quantities.											
CO3	Students will h	ave basic knowl	edge of proces	s monitoring and	d control.							

Unit I

Instrumentation System: introduction, typical applications of instrument systems, functional elements of a measurement system, classification of instruments, standards and calibration, static and dynamic characteristics of measurement systems.

Statistical Error Analysis: statistical analysis of data and measurement of uncertainty: probability, confidence interval or level, mean value and standard deviation calculation, standard normal distribution curve and probability tables, sampling and theory based on samples, goodness of fit, curve fitting of experimental data.

Unit II

Sensors and Transducers: introduction and classification, transducer selection and specifications, primary sensing elements, resistance transducers, variable inductance type transducers, capacitive transducers, piezo-electric transducers, strain gauges.Smart Sensors: Introduction, architecture of smart sensor, bio sensor and physical sensor, Piezo-resistive pressure sensor, microelectronic sensor.

Measurement of force, torque, shaft power, speed and acceleration: force and weight measurement system, measurement of torque, shaft power, speed and velocity: electrical and contactless tachometers, acceleration: vibrometers, seismic and piezo-electric accelerometer.

Unit III

Measurement of pressure, temperature and flow: Basic terms, Pressure: Liquid column manometers, elastic type pressure gauges, electrical types for pressure and vacuum, temperature measuring instruments: RTD sensors, NTC thermistor, thermocouples, and semiconductor based sensors. Flow Measurement: drag force flow meter, turbine flow meter, electronic flow meter, electromagnetic flow meter, hot-wire anemometer.

Instruments for measuring Humidity, Density, and Viscosity:Humidity definitions, Humidity measuring devices, Density and Specific Gravity, Basic terms, Density measuring devices, Density application considerations, Viscosity, Viscosity measuring instruments, basic terms used in pH, pH measuring devices, pH application considerations. Problems.

Unit IV

Basic Control System: Introduction, basic components of control system, classification : closed loop and open loop control system, transfer function, block diagram representation of closed loop system and its reduction techniques, mathematical modelling of various mechanical systems and their analogy with electrical systems, signal flow graph and its representation.

Mechanical Controllers: Basics of actuators: pneumatic controller, hydraulic controller and their comparison. **Text Books:**

1.Instrument and control by Patranabis D., PHI Learning.

2. Fundamental of Industrial Instrumentation and Process control by W.C.DUNN, McGrawHill,

3. Thomas G. Beckwith, Roy D. Marangoni, John H. LienhardV, Mechanical Measurements (6th Edition), Pearson Education India, 2007

4. Gregory K. McMillan, Process/Industrial Instruments and Controls Handbook, Fifth Edition, McGraw-Hill: New York, 1999.

Reference Books:

1. Mechanical Measurement and Control by A K Sawhney

2. Modern control Engineering by Katsuhiko Ogata, PHI publication

	B. Tech. (4 th Semester)Mechanical Engineering										
ES-206LA	MATERIALS ENGINEERING LAB										
Lecture	Tutorial	Practical	Credits	Major Test	Minor Test	Practical	Total	Time (Hrs.)			
0	0	2	1	-	40	60	100	3			
Purpose	Tomakethestudentsawareofmaterialstructureandpropertiesofmaterialusing differentexperiments.										
CourseOutcomes											
CO 1	Ability to de	esign and cor	nduct exper	iments, acc	quire data, ar	nalyze and inte	erpret dat	a			
CO 2	Ability to de		grain size	and micros	structure in d	ifferent Ferrou	us alloys	by means			
CO 3	Ability to learn about microstructures of different Non-Ferrous alloys by means of experiments.										
CO 4	To learn about heat treatment processes through experiments.										
CO 5		nalyze micros erent material		Heat-treate	ed specimen	s and perform	Fatigue	and creep			

List of Experiments:

- 1. To Study various Crystal Structures through Ball Models.
- 2. To study the components and functions of Metallurgical Microscope.
- 3. To learn about the process of Specimen Preparation for metallographic examination.
- 4. To perform Standard test Methods for Estimation of Grain Size.
- 5. To perform Microstructural Analysis of Carbon Steels and low alloy steels.
- 6. To perform Microstructural Analysis of Cast Iron.
- 7. To perform Microstructural Analysis of Non-Ferrous Alloys: Brass & Bronze.
- 8. To perform Microstructural Analysis of Non-Ferrous Alloys: Aluminium Alloys.
- 9. To Perform annealing of a steel specimen and to analyze its microstructure.
- 10. To Perform Hardening of a steel specimen and to analyze its microstructure.
- 11. To performFatiguetest on fatiguetestingmachine.
- 12. To perform Creep test oncreep testingmachine.

Note: At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

	B. Tech. (4 th Semester) Mechanical Engineering										
MEC-210LA	FLUID MECHANICS & FLUID MACHINES LAB										
Lecture	Tutorial	Tutorial Practical Credits Major Minor Practical Total Time									
				Test	Test						
0	0	2	1	0	40	60	100	3			
Purpose	To familia	rize the stud	ents with t	he equipn	nent and ins	trumentation	of Fluid I	Mechanics			
	and Machines										
Course Outcomes											
CO1	Operate f	luid flow equ	ipment and	l instrume	ntation.						
CO2	Collect a	nd analyse	data usir	ng fluid r	nechanics	principles ar	nd exper	imentation			
	methods.										
CO3	Determine	e the coeffici	ent of disch	harge for v	arious flow	measuremer	nt devices				
CO4	Calculate	flow charact	eristics su	ch as Rey	nolds numb	er, friction fa	ctor from	laboratory			
	measurer	nents.		-				-			
CO5	Analyze t	he performar	nce charac	teristics of	f hydraulic p	umps.					
CO6	Analyze t	he performar	nce charac	teristics of	f hydraulic tu	urbines.					

List of Experiments:

- 1. To verify the Bernoulli's Theorem.
- 2. To determine coefficient of discharge of an orifice meter.
- 3. To determine the coefficient of discharge of Venturimeter.
- 4. To determine the coefficient of discharge of Notch.
- 5. To find critical Reynolds number for a pipe flow.
- 6. To determine the friction factor for the pipes.
- 7. To determine the meta-centric height of a floating body.
- 8. Determination of the performance characteristics of a centrifugal pump.
- 9. Determination of the performance characteristics of a reciprocating pump.
- 10. Determination of the performance characteristics of a gear pump.
- 11. Determination of the performance characteristics of Pelton Wheel.
- 12. Determination of the performance characteristics of a Francis Turbine.
- 13. Determination of the performance characteristics of a Kaplan Turbine.
- 14. Determination of the performance characteristics of a Hydraulic Ram.

Note: At least ten experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

	B. Tech. (4th Semester) Mechanical Engineering										
MC-902A	Constitution of India										
Lecture	Tutorial Practical Credits Major Test Minor Test Total										
3	0	0	•	75	25	100	3 Hrs.				
Purpose	To know the basic features of Constitution of India										
	Course Outcomes										
CO1	The students	will be able	to know abou	t salient feature	es of the Constit	ution of Ind	ia.				
CO2	To know abo	To know about fundamental duties and federal structure of Constitution of India.									
CO3	To know abo	ut emergenc	yprovisions in	Constitution of	fIndia.						
CO4	To know abo	ut fundamen	tal rights unde	er constitution c	of India.						

UNIT I

Meaning of the constitution law and constitutionalism, Historical perspective of the Constitution of India. Salient features and characteristics of the Constitution of India.

Scheme of the fundamental rights

UNIT II

The scheme of the Fundamental Duties and its legal status. The Directive Principles of State Policy – Its importance and implementation. Federal structure and distribution of legislative and financial powers between the Union and the States.

Parliamentary Form of Government in India - The constitution powers and status of the President of India

UNIT III

Amendment of the Constitutional Powers and Procedure. The historical perspectives of the constitutional amendments in India.

Emergency Provisions: National Emergency, President Rule, Financial Emergency. Local Self Government – Constitutional Scheme in India.

UNIT IV

Scheme of the Fundamental Right to Equality. Scheme of the Fundamental Right to certain Freedom

under Article 19.

Scope of the Right to Life and Personal Liberty under Article 21.

Text Books

1. Constitution of India. Prof. Narender Kumar (2008) 8th edition. Allahabad Law Agency.

Reference Books:

1. The constitution of India. P.M. Bakshi (2016) 15th edition. Universal law Publishing.